

Kaira District Cooperative Milk Producers' Union Ltd., Anand (Amul Dairy)

CII National Award for Excellence in Energy Management 2024

Sandeep Rai-Factory Manager Aditya Laharaya- Head Engineering Kheda Satellite Dairy, Khatraj

Kaira District Cooperative Milk Producers' Union Ltd., Anand (Amul Dairy) FY 2023-24

12 States - 45 Units

One in USA

Capacity – 8.4 Million Kgs/Day

DCS - 1269 Numbers

Milk Producers - 0.7 Million

Milk Procured - 1640 Million Kgs (Year 2023-24)

1.45 Million Milch Animals

Sales Turnover - Rs 129,110 Millions

Kheda Satellite Dairy, Khatraj (A Unit of Amul Dairy, Anand)

Established – Year 1996

Capacity – 1.6 Million Kgs/day

Milk Procured - 206 Million Kgs/Year

Sales Turnover - Rs 12,893 Millions

Cheddar Cheese, Processed Cheese, Mozzarella, Paneer, Skimmed Milk Powder, Whey Powder

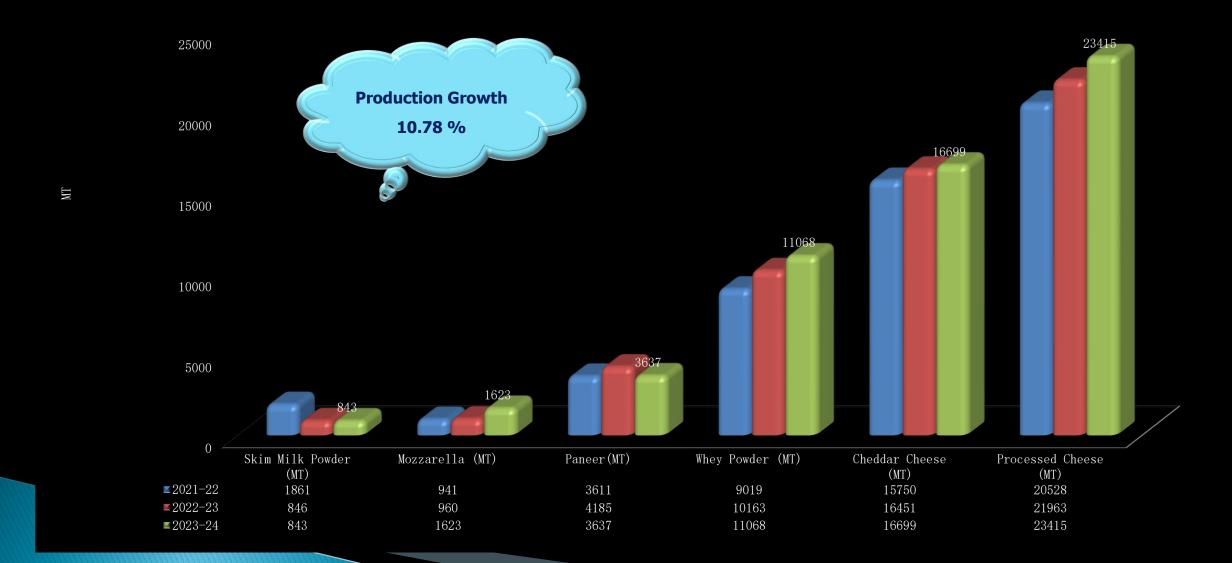
Yoghurt, UHT & Shrikhand.

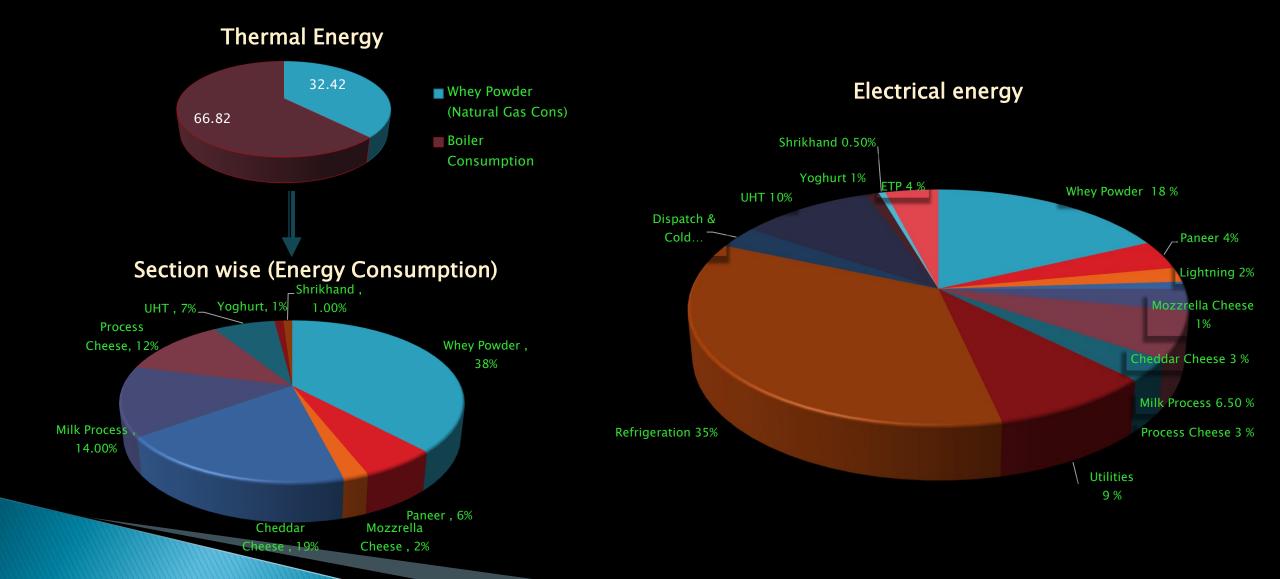
Yoghurt Production

Yoghurt Packing

Energy Efficient Equipment

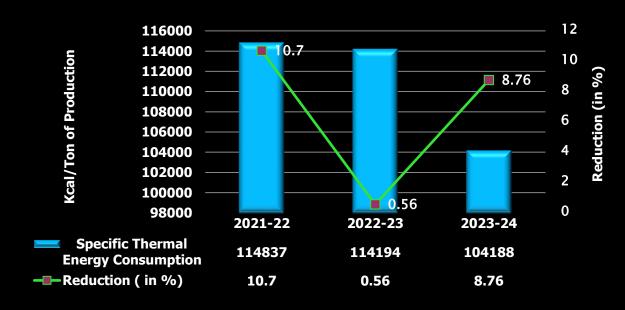
UHT Pre-Processing



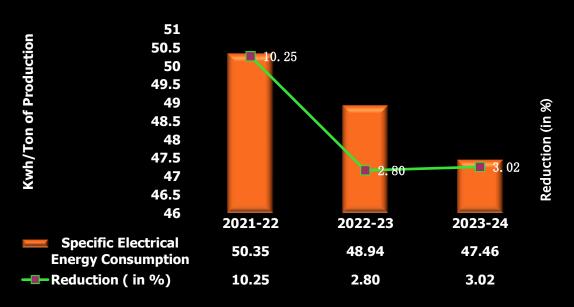


Mozzrella Cheese Plant

Production - FY 2021-22 to 2023-24

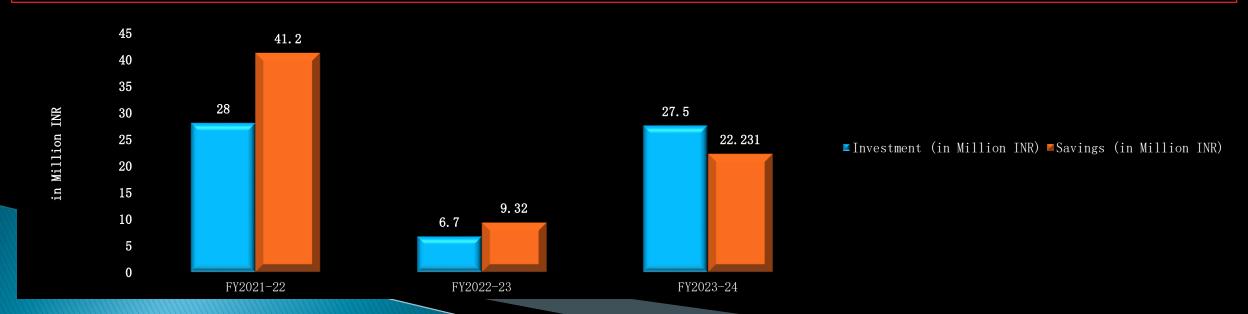


Energy Consumption Pattern



Specific Thermal / Electrical Energy Consumption (Last three years)

Specific Thermal Energy Consumption (Kcal/Ton of Production)



Specific Electrical Energy Consumption (Kwh/Ton of Production)

Energy Saving Projects Implemented in last 3 years (FY 2021-22 to 2023-24)

Year	No of Energy Saving Projects	Investments (in Millions)	Electrical Savings (Million kWh)	Thermal Savings (Million Kcal)	Savings (INR Millions)	Payback Period	Impact on SEC in % (Electrical/ Thermal)
FY 2021-22	4	28	0.79	840	41.2	8 Months	3.96 / 1.84
FY 2022-23	6	6.7	0.07	1270.82	9.318	17 Months	0.33/2.63
FY 2023-24	5	27.5	0.31	2895	22.231	15 Months	1.37/5.84

Major energy Saving projects implemented in last three years

Year	Name of Energy Saving Projects	Investments (in Millions)	Electrical Savings (Million kWh)	Thermal Savings (Million Kcal)	Savings (INR Millions)	Payback Period (in months)
2021–22	Regenerative PHE (Cheddar-Milk & Whey)	2	1.46	3150	208	1
2021-22	Three stage cooling system for whey	10	0.47	0	3.55	40
2021-22	Ro Polisher water for heat & water recovery	15	0.21	0	1.64	110
2022-23	Hot water generator	2	0	71.69	4.15	6
2022-23	Evaporative Condenser	2	0.04	0	0.35	69
2022-23	Economizer for boiler	1	0	450	3.23	4
2023-24	Regenerative PHE (Mozzarella-Milk & Whey)	1	0.3	598	6.58	1.82
2023-24	Installation of Motion & Day Night Sensors	0.5	0.09	0	0.82	7.32

Falling Film Chiller

Boiler Economizer

Hot Water Generator

Energy efficient Smart shuttle Cold store

Three stage cooling system for Whey

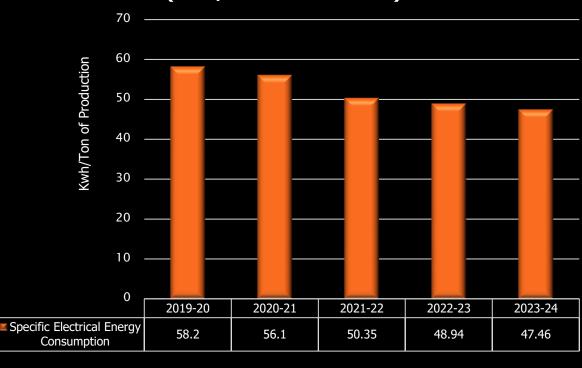
Evaporative Condenser

Rain Water Harvesting

Regenerative Heat Exchanger

RO Polish Water

Major Energy Efficient Equipment Year 2021-2024


Benchmarking self Assessment last five years

Specific Thermal Energy Consumption (Kcal/Ton of Production)

Reduction in five years 24.88 %

Specific Electrical Energy Consumption (Kwh/Ton of Production)

Reduction in five years 18.45 %

Hot water recovery from 50 Kl Milk Process line Investment:- Rs. 0.3 Million Savings- 336 M k cal/Annum

Encon Projects Planned in FY 2024-25

Year **2024-25**

modification work
Investment:- Rs. 1 Million
Savings- 0.0084 M kWH/Annum

Steam Condensate recovery from UHT Section Investment:- Rs 0.5 Million Savings- 1120 M Kcal/Annun

Installation of new soft water pumps
Investment:- Rs. 0.4 Million
Savings- 0.0042 M kWH/Annum

Innovative Projects Implemented

Screw Press Sludge de-watering system in ETP Section

Trigger Point

Earlier Decanter sludge de water system was consuming,

- ❖ 20 % of electrical power of ETP.
- Higher Maintenance /Frequent break down.

Technical Details

- ❖ Installed Screw Press Sludge de—watering System
- Capacity: 7000 Liters/hour
- ❖ Annual savings: Electrical Energy: 0.16 million Kwh Rs. 15 million

Replication Potential

This can be replicated in different industries having ETP.

Decanter

Screw Press

Innovative Projects Implemented

Automation of Vacuum Pump

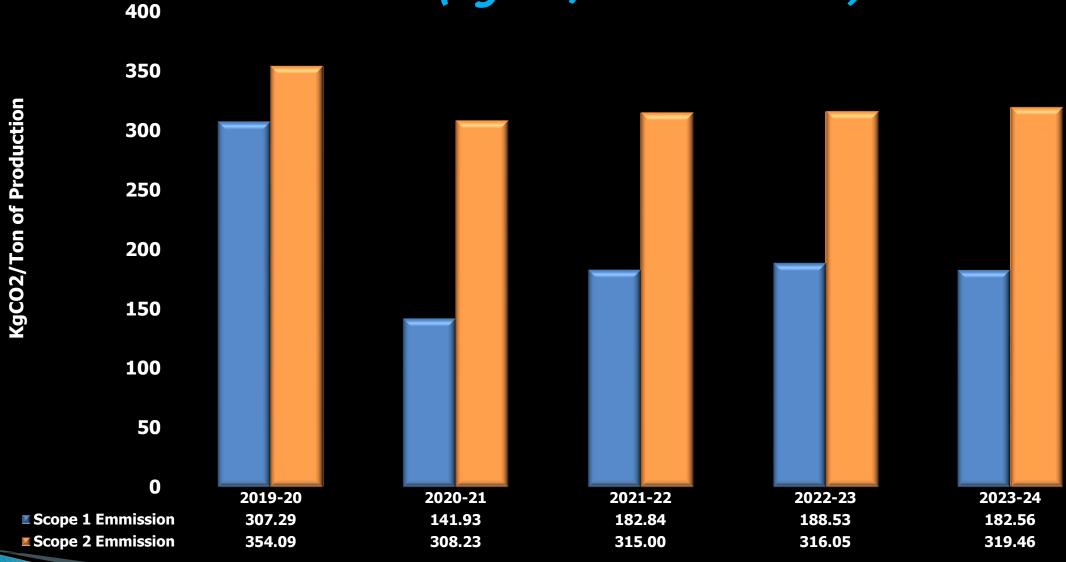
Trigger Point

Continuous operation of vacuum pump in cheddar vacuum sealing machine

- Continuous Operation of Vacuum pump of 30 KW
- Higher Maintenance /Frequent break down.

Technical Details

- Modification in automation
- ❖ Annual savings: Electrical Energy: 0.055 million Kwh Rs. 0.5 million



Vacuum sealing Machine

Replication Potential

This can be replicated in dairy industries having Cheddar manufacturing.

GHG Emission (KgCO2/Ton of Product)

GHG Emission - Methodology

- Dairy Plants GHG reporting/accounting to reduce emissions under Scope 1 & 2 and also working on Scope 3.
- Utilization of water received from Milk During different process (0.6 Million Ltrs/Day)
- **Solar installations** (Carbon project) *working for way forward.* Plant Level & Village level
- Organic fertilizer (Carbon project) Solid waste from Animal Dung
- Biogas as Fuel (Cooking application)— Gaseous waste from Animal Dung, Canteen waste & Effluent treatment plant
- Transport Route Optimization

Solar Powered Plants/Bulk Milk Coolers / Societies

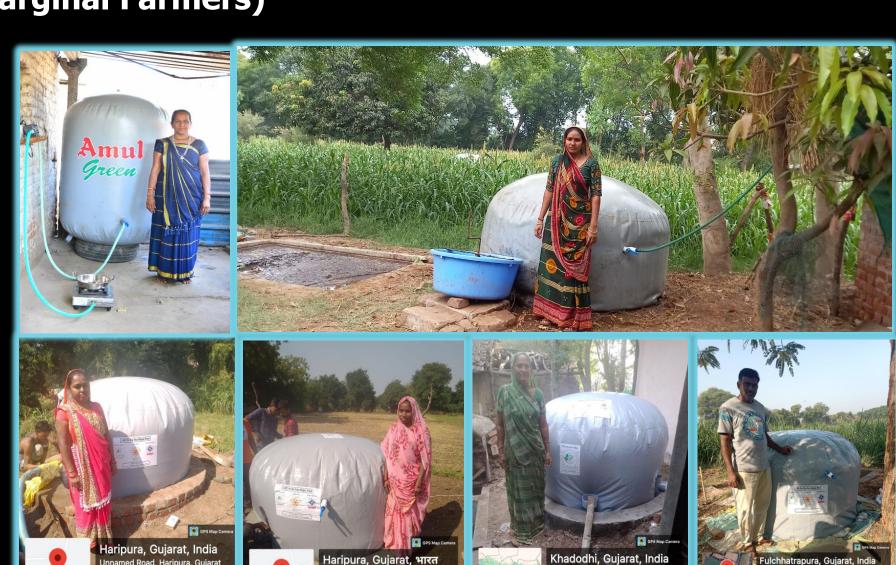
137 Village Societies running on Solar

50 % Energy Savings

Order placed for rest all societies

Organic Fertilizer Production Facility

Clean Energy Production at Dairy Farm


Innamed Road, Haripura, Gujarat

04/11/22 12:13 PM GMT +05:30

Long 72.772246°

(BioGas for Small & Marginal Farmers)

- 600 Biogas plants of 2M3 installed and **Functional**
- > 2000 biogas plant under planning for execution
- Tie up with Energy **Listed company firm for** carbon credit trading and giving new income source

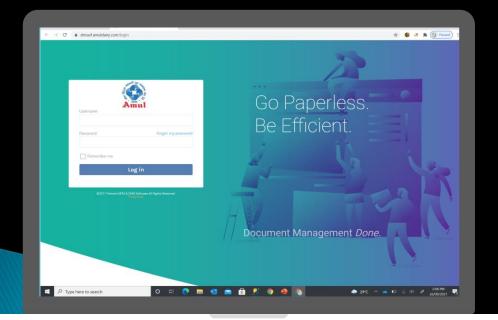
Unnamed Road, Haripura, Gujarat

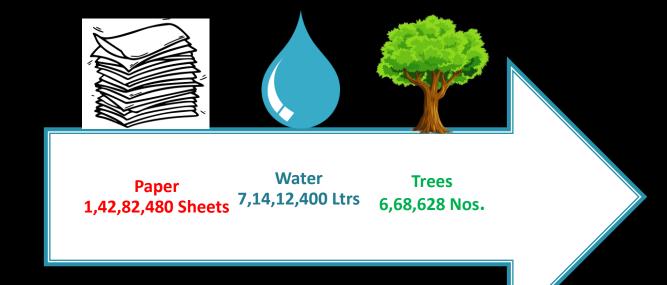
Fulchhatrapura, Gujarat, India Unnamed Road, Fulchhatrapura, Gujarat

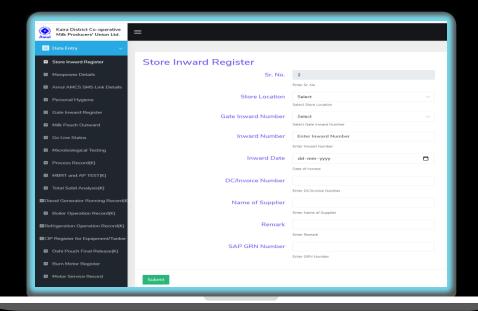
Unnamed Road, Khadodhi, Gujarat

Refractive Roof Coating System

- Therma cool Flooring at Various Building & Cow Shed
- Reduce Air-conditioning power consumption

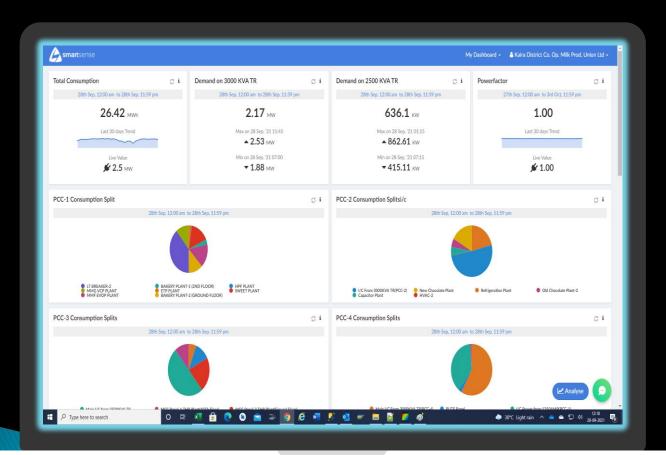


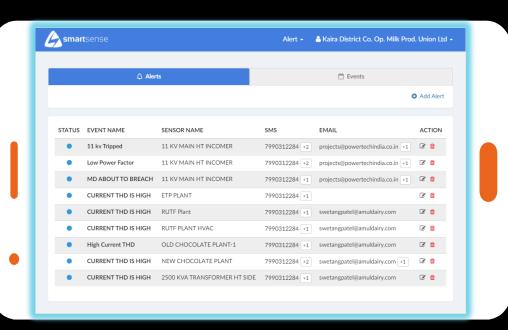



Digital Document Management System

- 100% Paper Less Office
- Fast movement of document
- Digitally signed documentation
- Easy to retrieve

1 sheet of paper requires around 5 litters of water & 10,000 trees are needed to make 1 tonne of paper.





Online Power Monitoring System

- Monitoring & analysis of power data through portal.
- Critical alerts

Waste Management at Amul For Packaging Material Plastic Waste

Waste to Energy

Biogas Generation in ETP

1000 SCM/day Biogas is generated from ETP

Hot Water Generator

- Biogas used to heat boiler feed water up to 95 deg C
 - Current saving is 5% of total fuel

Biogas plant of 15 M3

Biogas Generation at Canteen resulting in annual thermal Saving of 16.43 M Kcal.

Teamwork/Employee involvement & Monitoring Monthly Monitoring

2	Amul s	ecific	Consum	ption (f	Milk + V	Vhey) 📗	NURIEN MATERIA
Sr. No	Description	Unit	July-24	July-23	Jun-24	% Diff July-24 Vs July-23	Co2 Emission MT
1	Electricity KWH/1000 liters	KWH/KL	55.50	53.20	63.20	4.32	-72
2	Fuel Consumption/1000 liters	KCal / KL	1,15,965	1,10,326	1,18,407	5.11	-21
3	Water Consumption /1000 liters	Ltrs / KL	1199	895	1343	33.94	-14
4	Power in Refri /1000 liters	KWH / KL	17.23	16.67	17.66	3.39	-18
5	(Milk +Whey)	Ltrs/Day	12,32,844	11,57,676	12.30.628	6.49	- 93

Weekly Monitoring Meeting

Amul											
PARTICULAR	01.08.2	024 TO 07.08.	2027	25.07	2024 TO 31.0	7.2024		AUG - 2023 SPECIFIC			
				Till Date 07.08.2024					124		
		Average	Specific		Average	Specific	Total	Average	Specific	Average	
POWER	551800	78829	60.44	462377	66054	59.98	551800	78829	60.44	52.69	
THERMAL (GIS)	126688	18098	117110	95410	13630	104465	126688	18098	117110	113919(AV	
THERMAL (LDO)	0	0		0	0 0	0	0				
BOREWELL WATER	11207000	1601000	1227	9505000	1357957	1233	11207000	1601000	1227	865	
TOTAL WATER	14192000	2027429	1554	11355000	1622143	1473	14192000	2027429	1554	1435	
ETP WASTE WATER	10653000	1521857	1167	10761000	1537286	1396	10653000	1521857	1167	923	
MILK (KG) + Whey	9130260	1304323		7708390	1101199		9130260	1304323		1179721 (A	

Daily monitoring

		Al	AIOT K2D	EIP ANALI	313 KEP	OKI	DATE4- 1	13 08 2024				
SAMPLE	PH	B.O.D.	C.O.D.	T.S & MLSS	F.O.G.	T.D.S.	CHLORIDE	SETTLING	D.O.	V.F.A.	ALKALINITY	RATIO
NLET	5.88		6000	5570	4580	2000	540					
EQUALIZATION	6.98		3680									
UASB-1												
UASB-2	7.58		456							15.2	40	0.38
UASB-3	7.35		560							19.2	38	0.51
UASB-4	7.44		512							18.1	40	0.45
NEW AERATION	7.90			3540				560	1.1			
OLD AERATION	7.80			3600				930	0.8			
NEW CLARIFIER			88									
OLD CLARIFIER			84									
FINAL	7.99		86			2040	560					
MOZZARELLA	6.39		4280									
CHEDDAR	6.16		5960									
PANEER	6.75		4320									
WPP	5.72		6280									
CIP	6.62		4640									
CH PKG	6.91		3280									
SLUDGE				6.14%								
SCREWPRESS	SOLIDS	20	MOISTURE	80								

Learning from CII Energy Award or Any other Award Program

- Employees Motivation.
- Increased recognition of the organization.
- Learning from other fellow participating companies.
- Kaizen activities enhancing the involvement of workforce to get desired output.
- Sense of ownership among workforce.
- Kaizen Improvements at workplace for ease of work.
- Learning about environmental aspects and devices for energy savings.

Progressive Roadmap of Amul

2030-31

Water surplus Organization 100 % Electricity from Renewable Energy

2024-25

Utilization of treated effluent water


1250 kw solar panel installation All DCS (1269 Nos) will be solar operated

2023-24

1105 KWH Solar panel installed with investment of Rs 31.65 Million

Utilization of RO reject water Sludge reactor for Biogas generation Motion Sensors installation

Award & Achievement

IDA Best Dairy Plant Runner up Award 2024

